语言: EN

师资队伍TEACHERS

当前位置: 首页 > 师资队伍 > 师资队伍 > 按职称 > 正文
李 冰
  • 姓名:

    李 冰

  • 性别:

  • 出生年月:

    1981.9

  • 职称:

    研究员

  • 导师类型:

    硕/博导

  • 研究方向:

    能源材料、燃料电池技术及车用能源系统

  • 在研课题:

    国家重点研发计划:测试系统多维度在线监测、健康诊断及寿命预测模块开发;国家重点研发计划:大功率燃料电池电堆开发;中车重大专项:长寿命高活性MEA开发;自然科学基金:燃料电池阴极铂基八面体催化剂的微观结构调控及电池性能研究

  • 电子邮箱:

  • 办公电话:

    021-69583850

  • 通讯地址:

    上海市嘉定区曹安公路4800号同济大学新能源汽车工程中心408,邮编:201804

2011年毕业于同济大学汽车学院,获工学博士学位,同年10月,进入同济大学机械工程博士后流动站从事两年的博士后研究工作,2013年11月出站后进入汽车学院从事教学科研工作,历任助理教授、副研究员和研究员。目前主要研究方向为能源材料的开发与应用。工作以来,作为负责人或核心骨干完成包括国家重点研发计划、国家863主题项目、国际合作项目、国家自然科学基金项目、中央高校基本科研业务费专项资金项目在内的纵向课题10余项,横向课题1项。至今已在国内外专业学术期刊累计发表科技论文近80篇。
教学情况:
承担车用新能源方向本科专业实验课《车用新能源技术综合实验》和博士专业课《燃料电池技术与科学前沿》的教学任务;承担研究生学位论文指导工作,已毕业研究生8名,在读博士研究生8人,硕士研究生8名。
代表科研项目:
1) 国家自然科学基金面上项目,52176198,燃料电池铂基催化剂浆料微团簇构筑过程及稳定机理研究,2022/01-2025/12,58万元,在研,主持;
2) 国家自然科学基金面上项目,21676204,燃料电池铂基八面体合金催化剂的微观结构调控及电池性能研究,2017/01-2020/12,64万元,已结题,主持
3) 国家重点研发计划,2020YFB0106601,燃料电池堆设计需求及性能衰减过程机理研究 (课题),2020/12-2023/11,910万元,在研,主持;
4) 国家重点研发计划,2018YFB1502703,测试系统多维度在线监测、健康诊断及寿命预测模块开发(课题),2019/04-2022/03,219万元,在研,主持;
5) 国家重点研发计划,2021YFB4001801,多场景、多类型氢能动力系统特征工况及需求分析(子课题),2021/12-2025/11,500万元,在研,主持;
6) 国家重点研发计划,2018YFB0106503,大功率燃料电池电堆开发(子课题),2018/07-2021/06,450.25万元,在研,主持;
7) 国家自然科学基金青年项目,21206128,燃料电池阴极Pt-Fe/C纳米线立体网络电催化剂研究,2013/01-2015/12,25万元,已结题,主持;
8) 未势能源,2022,膜电极关键技术开发,600万,在研,主持;
9) 中车重大专项,TJ-CRRC-2017-PM2,长寿命高活性MEA开发,2017/10-2021/08,240万元,在研,主持;
10) 中央高校交叉学科,22120180091,锂离子电容器多孔碳表面调控与负极匹配的性能强化机制研究,2018/01-2019/12,20万,在研,主持;
11) 国家博士后管理办公室,2012M510115,燃料电池Pt-Ir纳米线立体网络结构阳极催化剂研究,2012/06-2013/10,8万元,已结题,主持;
12) 国家科技部科技支撑项目,2015BAG06B00,面向产业化的燃料电池动力系统,2015/01-2017/12,888万元,在研,参加;
13) 国家科技部863项目,2014AA052501,压缩储供一体化高密度氢储系统开发,2014/01-2016/12,100万元,已结题,参加;
14) 国家科技部863项目,2012AA053301,基于风-光互补发电耦合电解制氢的站制氢技术,2013/01-2015/12,375万元,已结题,参加;
15) 国家科技部863项目,2012AA053305,70MPa加氢站系统集成、示范与安全评价技术,2013/01-2015/12,555万元,已结题,参加;
16) 国家科技部重大仪器项目,2012YQ150256,燃料电池汽车动力系统动态性能综合测试仪器开发及应用,2012/10-2016/08,233万元,已结题,参加。

代表学术论文:
1) 第一.Nitrogen-doped activated carbon for a high energy hybrid supercapacitor, Energy Environ. Sci., 2016, 9: 102-106. (JCR Q1, IF=39.714)(高被引论文);
2) 第一.Electrode materials, electrolytes and challenges in nonaqueous lithium-ion capacitors, Advanced Materials, 2018, 30(17): e1705670. (JCR Q1, IF=32.086);
3) 第一.Activated Carbon from Biomass Transfer for High Energy Density lithium-Ion Supercapacitors, Adv. Energy Mat., 2016, 6(18): 1600802. DOI: 10.1002/aenm.201600802. (JCR Q1, IF=29.698);
4) 通讯. The Controllable Design of Catalyst Inks to Enhance PEMFC Performance: A Review. Electrochem. Energ. Rev., 2021, 4, 67-100. (JCR Q1, IF=32.804);
5) 通讯. MOF-derived CoFe alloy nanoparticles encapsulated within N,O Co-doped multilayer graphitized shells as an efficient bifunctional catalyst for zinc–air batteries, Journal of Materials Chemistry A, 2022, 10, 14866-14874. (JCR Q1, IF=14.511);
6) 通讯. Understanding the functions and modifications of interfaces in membrane electrode assemblies of proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2021, 9, 15111. (JCR Q1, IF=14.511);
7) 通讯.Recent Advances in Pt-based Octahedral Nanocrystals as High Performance Fuel Cell Catalysts. J. Mater. Chem. A, 2016, 4: 11559-11581. (JCR Q1, IF=14.511);
8) 第一.Durability degradation mechanism and consistency analysis for proton exchange membrane fuel cell stack, Applied Energy, 2022, 314: 119020. https://doi.org/10.1016/j.apenergy.2022.119020 (JCR Q1, IF=11.446);
9) 通讯.Power evolution of fuel cell stack driven by anode gas diffusion layer degradation, Applied Energy, 2022, 313: 118858. https://doi.org/10.1016/j.apenergy.2022.118858 (JCR Q1, IF=11.446);
10) 通讯.Failure of cathode gas diffusion layer in 1 kW fuel cell stack under new European driving cycle, Applied Energy, 2021, 303: 117688. DOI:10.1016/j.apenergy.2021.117688 (JCR Q1, IF=11.446);
11) 通讯.Effect of Dispersion Solvents and Ionomers on the Rheology of Catalyst Inks and Catalyst Layer Structure for Proton Exchange Membrane Fuel Cells. ACS Appl Mater Interfaces, 2021, 13: 27119-27128. (JCR Q1, IF=10.383);
12) 通讯. Preparation of a Graphitized-Carbon-Supported PtNi Octahedral Catalyst and Application in a Proton-Exchange Membrane Fuel Cell, ACS Applied Materials & Interfaces, 2020, 12: 7047-7056. (JCR Q1, IF=10.383);
13) 通讯.Advanced Reversal Tolerant Anode in Proton Exchange Membrane Fuel Cells: Study on the Attenuation Mechanism during Fuel Starvation. ACS Appl Mater Interfaces, 2021, 13 (2): 2455-2461. (JCR Q1, IF=10.383);
14) 第一.High performance octahedral PtNi/C catalyst investigated from rotating disk electrode to membrane electrode assembly. Nano Research, 2019,12(2): 281-287. (JCR Q1, IF=10.269);
15) 通讯. Failure of cathode gas diffusion layer in 1 kW fuel cell stack under new European driving cycle, Journal of Power Sources, 2021, 515:230655. (JCR Q1, IF=9.794);
16) 通讯. From rotating disk electrode to single cell: exploration of PtNi/C octahedral nanocrystal as practical PEMFC cathode catalyst. J. Power Sources, 2018, 406: 118-127. (JCR Q1, IF=9.794);
17) 通讯. Rapid activation of a full-length proton exchange membrane fuel cell stack with a novel intermittent oxygen starvation method, Energy, 2022, 260: 125154, (JCR Q1, IF=8.857);
18) 通讯. Investigation of the reversible performance degradation mechanism of the PEMFC stack during long-term durability test, Energy, 2022, 258: 124747 (JCR Q1, IF=8.857);
19) 通讯. Experimental study of the influence of dynamic load cycle and operating parameters on the durability of PEMFC, Energy, 2021, 239: 122356, in press (JCR Q1, IF=8.857);
20) 通讯. Performance degradation and process engineering of the 10 kW proton exchange membrane fuel cell stack. Energy, 2021, 219: 119623. (JCR Q1, IF=8.857);
21) 通讯.Property evolution of gas diffusion layer and performance shrink of fuel cell during operation, Renewable Energy, 2022, 194: 596-603. (JCR Q1, IF=8.634);
22) 通讯. Preparation optimization and single cell application of PtNi/C octahedral catalyst with enhanced ORR performance. Electrochim. Acta, 2018, 288: 126-133. (JCR Q1, IF=7.336);
23) 通讯.Improved Electrochemical Performance of Biomass-Derived Nanoporous Carbon/Sulfur Composites Cathode for Lithium-Sulfur Batteries by Nitrogen Doping. Electrochimica Acta, 2016, 202:131-139. (JCR Q1, IF=7.336);
24) 第一. Controlling the microscopic morphology and permeability of catalyst layers in proton exchange membrane fuel cells by adjusting catalyst ink agglomerates, International Journal of Hydrogen Energy, 2021, 46: 32215-32225. (JCR Q2, IF=7.139);
25) 第一.Optimization of cathode microporous layer materials for proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2021, 46 (27): 14674-14686. (JCR Q2, IF=7.139);
26) 通讯. Degradation analysis of the core components of metal plate proton exchange membrane fuel cell stack under dynamic load cycles, International Journal of Hydrogen Energy, 2022, 47: 7432-7442. (JCR Q2, IF=7.139);
27) 通讯. Topology optimization design for the lightweight endplate of proton exchange membrane fuel cell stack clamped with bolts, International Journal of Hydrogen Energy, 2022, 47: 9680-9689. (JCR Q2, IF=7.139);
28) 通讯. Highly active and durable carbon support Pt-rare earth catalyst for proton exchange membrane fuel cell, International Journal of Hydrogen Energy, 2020, 45: 27291-27298. (JCR Q2, IF=7.139);
29) 通讯.Highly Efficient, Cell Reversal Resistant PEMFC Based on PtNi/C Octahedral and OER Composite Catalyst, International Journal of Hydrogen Energy, 2020, 45: 8930-8940. (JCR Q2, IF=7.139);
30) 通讯. Unique spatial effect of Zr-doped ceria on the anti-free radicals and performance of PEMFC. International Journal of Hydrogen Energy, 2021, 46 (39): 20693-20701. (JCR Q2, IF=7.139);
31) 通讯.Review of hydrogen crossover through the polymer electrolyte membrane, International Journal of Hydrogen Energy, 2021, 46: 22040-22061. (JCR Q2, IF=7.139);
32) 通讯. Recent progress of the gas diffusion layer in proton exchange membrane fuel cells: Material and structure designs of microporous layer. International Journal of Hydrogen Energy, 2021, 46 (5): 4259-4282. (JCR Q2, IF=7.139);
33) 通讯. Highly active and durable Pt-Co nanowire networks catalyst for the oxygen reduction reaction in PEMFCs. Int. J. Hydrogen Energy, 2016,41: 18592-18601. (JCR Q2, IF=7.139);
34) 通讯. Effect of rheological properties of catalyst slurry on the structure of catalyst layer in PEMFC, International Journal of Hydrogen Energy, 2022, 47: 8956-8964. (JCR Q2, IF=7.139);
35) 通讯.Effect of mesoporous carbon on oxygen reduction reaction activity as cathode catalyst support for proton exchange membrane fuel cell, International Journal of Hydrogen Energy, 2022, 10.1016/j.ijhydene.2022.06.131. (JCR Q2, IF=7.139);
36) 第一. Simple numerical simulation of catalyst inks dispersion in proton exchange membrane fuel cell by the lattice Boltzmann method, Physics of Fluids, 2021, 33, 115116; doi: 10.1063/5.0061704. (JCR Q1, IF=4.98);
37) 通讯.Preparation, Performance and Challenges of Catalyst Layer for Proton Exchange Membrane Fuel Cell, Membranes, 2021, 11, 879. (JCR Q1, IF=4.562);
38) 第一.A High-Durability Graphitic Black Pearl Supported Pt Catalyst for a Proton Exchange Membrane Fuel Cell Stack, Membranes, 2022, 12, 301, https://doi.org/10.3390/membranes12030301. (JCR Q1, IF=4.562);
39) 通讯.A Review of the Transition Region of Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cells: Design, Degradation, and Mitigation, Membranes, 2022, 12, 306, https://doi.org/10.3390/membranes12030306. (JCR Q1, IF=4.562);
40) 通讯.Oxygen doped activated carbon/SnO2 nanohybrid for high performance lithium-ion capacitor. Journal of Electroanalytical Chemistry, 2019, 850: 113398. (JCR Q1, IF=4.598);
41) 通讯.Proton Exchange Membrane Fuel Cell Reversal: A Review, Catalysts 2016, 6(12): 197. (JCR Q2, IF=4.501);
42) 通讯.The synergetic effect of air pollutants and metal ions on performance of a 5 kW proton-exchange membrane fuel cell stack, International Journal of Energy Research, 2021, 45: 7974-7986. (JCR Q1, IF=4.672);
43) 通讯. High-Repetitive Reversal Tolerant Performance of Proton-Exchange Membrane Fuel Cell by Designing a Suitable Anode. ACS Omega, 2020, 5 (17): 10099-10105. (JCR Q2, IF=4.132) ;
44) 通讯.Control of Cluster Structures in Catalyst Inks by a Dispersion Medium, ACS Omega 2021, 6, 32960−32969. (JCR Q2, IF=4.132);
45) 第一.Biomass-derived activated carbon/sulfur composites as cathode electrodes for Li–S batteries by reducing the oxygen content. RSC Advances 2020, 10 (5): 2823-2829. (JCR Q2, IF=4.036) ;
46) 第一. Agricultural waste-derived activated carbon/graphene composites for high performance lithium-ion capacitors, RSC Advances, 2019, 9: 29190 - 29194. (JCR Q2, IF=4.036);
47) 第一.Agricultural waste-derived activated carbon for high performance lithium-ion capacitors. RSC Advances, 2017, 7: 37923-37928. (JCR Q2, IF=4.036);
48) 通讯. Self-assembled silicon/phenolic resin-based carbon core-shell nanocomposite as an anode material for lithium-ion batteries. RSC Adv, 2018, 8: 3477-3482. (JCR Q2, IF=4.036);
49) 通讯. Accelerated Test of Silicone Rubbers Exposing to PEMFC environment. Progress in Natural Science: Materials International 2020, 30 (6): 882-889. (JCR Q2, IF=4.269);
50) 通讯.Carbon-supported Pt-Co nanowires as a novel cathode catalyst for proton exchange membrane fuel cells. Fuel cells, 2017, 17: 635-642. (JCR Q2, IF=2.25)。
获奖荣誉:
2010年,获教育部“学术新人奖人”
2011年,获上海市“上海市优秀毕业生”
2014年,获上海市“上海市优秀博士学位论文”
2015年,入选“同济大学青年英才计划”-优青计划
2016年,获同济大学“均胜电子奖教金”

欢迎有志于从事新能源材料及氢能技术方面研究的同学加入氢能团队

地址:上海市嘉定区曹安公路4800号宁远馆 邮编:201804 

© 2017 同济大学汽车学院 版权所有