语言: EN

师资队伍TEACHERS

韩志玉
  • 姓名:

    韩志玉

  • 性别:

  • 出生年月:

    1962.08

  • 职称:

    教授

  • 导师类型:

    博导

  • 研究方向:

    混合动力系统、发动机节能与排放、低碳燃料与燃烧

  • 电子邮箱:

  • 办公电话:

    021-69589225

  • 通讯地址:

    上海市曹安路4800号同济大学汽车学院,邮编:201804

韩志玉,留美博士,国际知名汽车动力专家,长期从事工程热物理和汽车动力科学研究和技术创新工作。曾多年在汽车工业界担任整车和发动机研发及经营管理的高管职务。目前研究领域包括车辆混合动力系统、内燃机零碳/低碳燃料燃烧、多维燃烧模拟和汽车能源与碳排放等。2006年当选国际汽车工程师学会会士(Fellow SAE International),目前担任SAE会士委员会委员,SAE新能源汽车技术委员会主席。2016-2023连续八年被列为爱斯唯尔(Elsevier)中国高被引学者。

1983和1986年分别获西安交通大学内燃机专业学士和硕士学位,后留校任教。1991年赴美留学,在世界著名的威斯康星-麦迪逊大学发动机研究中心开展内燃机数值模拟研究,1996年获该校机械工程博士学位。1997年获国际汽车工程师学会(SAE)霍宁纪念奖(Horning Memorial Award)(SAE最佳发动机论文奖,每年奖励1 篇)。
在美期间先后在纳威斯达国际卡车与发动机公司和福特汽车公司工作。曾任福特汽车公司研究实验室主任技术专家和先进发动机研发经理,期间多次参与或负责公司内的发动机新概念和新技术重大技术研发项目,包括汽油机直喷燃烧及燃烧系统、可变压缩比发动机、高速柴油机燃烧及排放控制、F1赛车发动机燃烧及功率提升、内燃机多维燃烧模型及汽油机燃烧系统优化设计等。2002年获亨利.福特技术奖(福特汽车公司最高技术奖),2006年当选为SAE会士。
2004年底回国,从事汽车企业技术管理工作。曾任长城汽车股份有限公司副总经理兼技术研究院院长,组织多款轿车和发动机新产品的开发并规划公司轿车和发动机等产品平台。后同时受聘于长丰集团公司和湖南大学,任长丰集团总经理助理兼任长丰动力公司总经理,分管轿车、发动机和新能源汽车的规划和技术协调管理。

在湖南大学,任“985”汽车动力总成创新平台建设的首席科学家、教授,负责规划并新建了先进动力总成技术研究中心并担任主任,负责承担了科技部863课题和支撑计划专项等重大科研项目。2008年荣获湖南省政府“潇湘友谊奖” 。

从2012年起转向新能源汽车和企业投资与管理。多次担任地方政府和投资公司顾问,协助开展国际间企业投资和兼并重组工作,代表投资方出任浙江绿野汽车有限公司董事长等职务。2014年联合创办江苏上淮动力有限公司并担任董事长。

2018年加入同济大学,目前主要从事混合动力系统及能量管理策略、混合动力专用发动机、零碳/低碳燃料燃烧、内燃机多维燃烧模拟等方面的研究。社会兼职包括SAE新能源汽车技术委员会主席,全球汽车精英组织副主席,中国汽车工业协会燃气汽车分会专家组副组长等。

第一作者高被引论文(更新至2025/03/10):

1.Han, Z., & Reitz, R. D. (1995). Turbulence modeling of internal combustion engines using RNG κ-ε models. Combustion science and technology, 106(4-6), 267-295. https://doi.org/10.1080/00102209508907782. (Google Scholar 引用1910次).

2.Han, Z., & Reitz, R. D. (1997). A temperature wall function formulation for variable-density turbulent flows with application to engine convective heat transfer modeling. International journal of heat and mass transfer, 40(3), 613-625. https://doi.org/10.1016/0017-9310(96)00117-2. (Google Scholar引用827次).

3.Han, Z., Uludogan, A., Hampson, G. J., & Reitz, R. D. (1996). Mechanism of soot and NOx emission reduction using multiple-injection in a diesel engine. SAE transactions, 105, 837-852. http://www.jstor.org/stable/44736321. (SAE Horning Award paper, Google Scholar 引用656次).

近五年学术专著和论文:

1.Han, Z. (2022). Simulation and Optimization of Internal Combustion Engines. Warrendale, USA: SAE International.

2.韩志玉. (2021). 内燃机数值模拟与优化. 北京,中国:机械工业出版社.

3.Liu, K., Han, Z., Zhang, J., Tang, Z., & Tang, H. (2025). Techno-economic and environmental impacts of hybridization and low-carbon fuels on heavy-duty trucks. Energy Conversion and Management, 332, 119634. https://doi.org/10.1016/j.enconman.2025

4.Ji, F., Meng, S., Han, Z., Dong, G., & Reitz, R. D. (2025). Progress in knock combustion modeling of spark ignition engines. Applied Energy, 378(B), 124852. https://doi.org/10.1016/j.apenergy.2024.124852

5.Liu, K., Han, Z., & Feng, J. (2025). Fuel-saving potentials of hybrid electric vehicles with different powertrain configurations. SAE Technical Paper, 2025-01-7031. https://doi.org/10.4271/2025-01-7031

6.Liu, K., Yu, B., Sun, Y., Xu, J., Liu, Y., & Han, Z. (2024). Energy management improvement in the charge-sustaining mode of a plug-in hybrid electric vehicle. International Journal of Powertrains, 13(4), 337–361. https://doi.org/10.1504/IJPT.2025.10068011

7.Zhang, J., Han, Z., Liu, K., & Zhao, Y. (2024). Optimization for fuel consumption and TCO of a heavy-duty truck with electricity-propelled trailer. Energy, 312, 133555. https://doi.org/10.1016/j.energy.2024.133555

8.Meng, S., Han, Z., Fan, B., & Wu, Z. (2024). Impacts of fuelling methods on knock-limited combustion and emissions of a dedicated hybrid spark-ignition engine. Applied Thermal Engineering, 254, 123898. https://doi.org/10.1016/j.applthermaleng.2024.123898

9.Meng, S., Han, Z., & Wu, Z. (2024). A numerical study on knock combustion suppression using targeted fuel injection in an SI engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 238(5), 1114–1128. https://doi.org/10.1177/09544070221143862 (Advance online publication, 2022).

10.Ji, F., Meng, S., & Han, Z. (2024). Knock prediction improvement with application to the analysis of knock mitigation with targeted water injection in SI engines. Combustion Science and Technology, 0(0). https://doi.org/10.1080/00102202.2024.2323572

11.Meng, S., Han, Z., Fan, B., Wu, Z., Shao, Q., & Tong, L. (2024). Experimental study of spatial distribution of knock events in a turbocharged spark-ignition engine. International Journal of Engine Research, 25(7), 1251–1264. https://doi.org/10.1177/14680874241227552

12.Sun, Y., Han, Z., Liu, H., & Xu, Z. (2024). 串并联混动变速箱挡位对整车性能的影响 [Effects of transmission gears on series-parallel hybrid vehicle performance]. Journal of Tongji University (Natural Science), 52(1), 115–121. https://doi.org/10.11908/j.issn.0253-374x.22198

13.Feng, J., & Han, Z. (2024). Progress in research on equivalent consumption minimization strategy based on different information sources for hybrid vehicles. IEEE Transactions on Transportation Electrification, 10(1), 135–149. https://doi.org/10.1109/TTE.2023.3258639 (Advance online publication, 2023).

14.Feng, J., Han, Z., Wu, Z., & Li, M. (2024). Approximate optimal energy management with a high-precision vehicle speed prediction algorithm. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 238(4), 774–787. https://doi.org/10.1177/09544070221134332 (Advance online publication, 2022).

15.Han, Z., Meng, S., Feng, J., Li, M., Lyu, M., Zhang, J., & Chen, Q. (2023). Energy transformation propelled evolution of automotive carbon emissions. SAE Technical Paper, 2023-01-7006. https://doi.org/10.4271/2023-01-7006

16.Liu, X., & Han, Z. (2023). LES study of the mixing process and cyclic variation of a direct-injection hydrogen engine. SAE Technical Paper, 2023-01-7025. https://doi.org/10.4271/2023-01-7025

17.Zhou, H., Meng, S., & Han, Z. (2023). Combustion characteristics and misfire mechanism of a passive pre-chamber direct-injection gasoline engine. Fuel, 352, 129067. https://doi.org/10.1016/j.fuel.2023.129067

18.Sun, Y., Han, Z., & Zhao, S. (2023). MPC-based downhill coasting-speed control method for motor-driven vehicles. SAE Technical Paper, 2023-01-0544. https://doi.org/10.4271/2023-01-0544

19.Liu, K., & Han, Z. (2023). Analytical study on the fuel-saving potentials of a series hybrid electric vehicle. SAE Technical Paper, 2023-01-0468. https://doi.org/10.4271/2023-01-0468

20.Sun, Y., Han, Z., Feng, J., & Wu, Z. (2023). Range-extender in-the-loop method for fuel consumption prediction of hybrid electric vehicles. International Journal of Automotive Technology, 24(1), 91–103. https://doi.org/10.1007/s12239-023-0009-6

21.Feng, J., Han, Z., & Li, M. (2023). Energy management strategy considering speed feature recognition and cabin noise constraint for hybrid commercial vehicles. International Journal of Automotive Technology, 24(1), 273–286. https://doi.org/10.1007/s12239-023-0024-7

22.Zhou, H., Han, Z., Wu, Z., & Meng, S. (2022). 被动预燃室汽油机当量燃烧特性的数值分析 [Numerical analysis of the stoichiometric-combustion characteristics of a gasoline engine with a passive pre-chamber]. Chinese Internal Combustion Engine Engineering, 43(6), 18–26. https://doi.org/10.13949/j.cnki.nrjgc.2022.06.003

23.Li, M., Feng, J., & Han, Z. (2022). 串联式和增程式混合动力轻型商用车的性能对比 [Performance comparison of the series type and the range-extender type of the hybrid light commercial vehicles]. Journal of Automotive Safety and Energy, 13(3), 550–559. https://doi.org/10.3969/j.issn.1674-8484.2022.03.017

24.Luo, K., Huang, Y., Han, Z., Li, Y., Shi, Y., Liu, W., & Tang, C. (2022). Low-speed performance compensation of a turbocharged natural gas engine by intake strategy optimization. Fuel, 324, 124748. https://doi.org/10.1016/j.fuel.2022.124748

25.Meng, S., Wu, Z., Han, Z., Wang, Y., Lyu, M., & Kong, D. (2022). Modeling analysis of thermal efficiency improvement up to 45% of a turbocharged gasoline engine. SAE Technical Paper, 2022-01-7051. https://doi.org/10.4271/2022-01-7051

26.Li, M., Feng, J., & Han, Z. (2022). Improved energy management with vehicle speed and weight recognition for hybrid commercial vehicles. SAE Technical Paper, 2022-01-7052. https://doi.org/10.4271/2022-01-7052

27.Wu, Z., Han, Z., Meng, S., Li, T., & Hu, B. (2022). Knock limited spark advance prediction of a direct-injection spark-ignition engine using a Livengood-Wu integral transport equation based knock model. SAE Technical Paper, 2022-01-7054. https://doi.org/10.4271/2022-01-7054

28.Feng, J., Han, Z., Wu, Z., & Li, M. (2022). A dynamic ECMS method considering vehicle speed pattern and minimum engine operation time for a range-extender electric vehicle. IEEE Transactions on Vehicular Technology, 71(5), 4788–4800. https://doi.org/10.1109/TVT.2022.3148268

29.Wu, Z., Deng, P., & Han, Z. (2022). A numerical study on fuel film and emissions formations during cold start in a diesel engine using an improved spray-wall impingement model. Fuel, 320, 123898. https://doi.org/10.1016/j.fuel.2022.123898

30.Lü, M., Han, Z., & Wu, Z. (2022). 车用增程器扭振特性优化与鲁棒性分析 [Optimization and robustness analysis of the torsional vibration characteristics of a vehicular range-extender]. Chinese Internal Combustion Engine Engineering, 43(1), 82–93. https://doi.org/10.13949/j.cnki.nrjgc.2022.01.010

31.Meng, S., Han, Z., Shi, Y., Liu, W., Huang, Y., & Wu, Z. (2021). Improving combustion performance of a dedicated range-extender engine with refined intake-charging characteristics and cooled EGR. SAE Technical Paper, 2021-01-7001. https://doi.org/10.4271/2021-01-7001

32.Feng, J., Han, Z., Sun, Y., & Wu, Z. (2021). A comparative study on energy management strategies for an automotive range-extender electric powertrain. SAE Technical Paper, 2021-01-7027. https://doi.org/10.4271/2021-01-7027

33.Wu, Z., Han, Z., Shi, Y., Liu, W., Zhang, J., Huang, Y., & Meng, S. (2021). Combustion optimization for fuel economy improvement of a dedicated range-extender engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 235(9), 2525–2539. https://doi.org/10.1177/0954407021993620

34.Han, Z., Wu, Z., Huang, Y., Shi, Y., & Liu, W. (2021). Impact of natural gas fuel characteristics on the design and combustion performance of a new light-duty CNG engine. International Journal of Automotive Technology, 22(6), 1619–1631. https://doi.org/10.1007/s12239-021-0140-1

35.Wu, Z., & Han, Z. (2020). 天然气-柴油双燃料燃烧的微种群遗传算法数值优化 [Numerical optimization of engine combustion with natural gas and diesel dual-fuels based on the micro genetic algorithm]. Transactions of CSICE, 38(4), 359–367. https://doi.org/10.16236/j.cnki.nrjxb.202004047

36.Han, Z., Wu, Z., Gao, X., Sun, Y., Ni, R., Feng, J., Zhong, J., Chen, X., Zhao, Z., & Yu, Z. (2020). Development and demonstration of a new range-extension hybrid powertrain concept. SAE Technical Paper, 2020-01-0845. https://doi.org/10.4271/2020-01-0845

37.Wu, Z., & Han, Z. (2020). Micro-GA optimization analysis of the effect of diesel injection strategy on natural gas-diesel dual-fuel combustion. Fuel, 259, 116288. https://doi.org/10.1016/j.fuel.2019.116288

38.Zhao, Z., Jiang, S., Ni, R., Fu, S., Han, Z., & Yu, Z. (2020). Fault-tolerant control of clutch actuator motor in the upshift of 6-speed dry dual clutch transmission. Control Engineering Practice, 95, 104268. https://doi.org/10.1016/j.conengprac.2019.104268

地址:上海市嘉定区曹安公路4800号宁远馆 邮编:201804 

© 2017 同济大学汽车学院 版权所有