语言: EN

师资队伍TEACHERS

林 瑞
  • 姓名:

    林 瑞

  • 性别:

  • 出生年月:

    1973/09

  • 职称:

    教授

  • 导师类型:

    博导

  • 研究方向:

    车用新能源材料及氢能燃料电池技术/多维传感器智能故障诊断技术/先进燃料电池及电解槽系统监测技术/燃料电池及电解槽电堆关键材料的人工智能辅助设计研发/基于数据驱动的燃料电池健康状态评估与寿命智能预测/储能材料基础研究及应用/碳中和技术基础研究及应用

  • 电子邮箱:

  • 通讯地址:

    上海市曹安公路4800号同济大学汽车学院,邮编:201804

研究领域:
(1) 燃料电池及电解槽电堆关键材料的人工智能辅助设计研发
(2) 多维传感器智能故障诊断技术研究
(3) 燃料电池在线故障分区诊断技术及故障机制研究
(4) 燃料电池关键材料的多源异构信息融合及图像处理方法
(5) 基于数据驱动的燃料电池健康状态评估与寿命智能预测
(6) 电催化在线原位表征技术
(7) 燃料电池催化剂设计及规模化合成
(8) 电解水制氢催化剂可控制备
(9) 燃料电池系统预测性维护及延寿研究
(10) 燃料电池气体扩散层的制备及传输特性研究
(11) 燃料电池膜电极的设计与开发
(12) 质子交换膜电解槽的设计
(13) 二氧化碳定向电催化转化的选择性控制
个人介绍:
林瑞,女,同济大学汽车学院教授/博导,科技部国家重点研发计划首席科学家。2002年毕业于浙江大学,获工科博士学位。2004年中科院大连化物所催化国家重点实验室博士后出站;2005年西班牙最高科研理事会催化研究所工作;2008-2010年德国航天航空局电化学能源中心(DLR)从事氢燃料电池关键材料及关键技术研究工作。
2004年进入同济大学汽车学院工作至今,在新能源领域已有二十余年的研究经验。目前的主要研究方向为氢能与燃料电池的关键技术研究,包括燃料电池/电解槽电堆及关键材料的人工智能辅助设计研发、基于数据驱动的燃料电池健康状态评估与寿命智能预测、多维传感器智能故障诊断技术研究、先进燃料电池及电解槽系统监测技术研发、燃料电池/电解水催化剂及高性能膜电极的研发。曾任国际氢能经济和燃料电池伙伴计划(IPHE)中国联络人、教育部“节能与环保汽车创新引智基地”秘书、汽车学院车用新能源方向教学责任教授。
主持科技部国家重点研发计划“氢能专项”、科技部国家重点研发计划政府间重点专项、科技部国家重大仪器开发专项(课题)、国家自然科学基金、壳牌氢能国际合作项目及上汽前瞻创新先导项目负责人。以第一/通讯作者在Advanced Materials等高水平期刊累计发表SCI论文120余篇,授权专利20余项。曾获2023上海市科技进步一等奖、2017上海市科技进步一等奖、2019中国汽车工业科学技术进步特等奖以及2021上海产学研合作优秀项目一等奖等
教学方面,出版《车用燃料电池技术》教材,主讲“燃料电池技术”、“能源与电化学基础”等课程。指导多届学生获得国家大学生创新课题及上海市大学生创新课题。已指导博士研究生20名,硕士研究生36名。培养的硕士、博士曾多次获得国家级奖学金及优秀毕业生荣誉,在站博士后均获国家青年科学基金、博士后基金、上海市超级博士后等资助。
欢迎具有相关学科背景、热爱科研的优秀学生申请硕士/博士/博士后。在相关领域顶级期刊发表研究论文者优先,专业包括但不限于动力机械及工程热物理、机械工程、材料、自动化、物理、化学、仪器科学、力学等。
主持项目情况:
2024-2026 科技部国家重点研发计划“氢能专项”,首席科学家
2022-2025 科技部国家重点研发计划政府间重点专项,首席科学家
2017-2020 科技部国家重点研发计划,子课题主持
2016-2020 科技部国家重点研发计划,子课题主持
2012-2021 科技部国家重大科学仪器设备开发专项,子课题主持
2022-2025 国家自然科学基金,主持
2018-2021 国家自然科学基金,主持
2013-2013 国家自然科学基金国际合作项目,主持
2022-2024 上海市科委国际合作项目,主持
2020-2021 上汽集团合作项目,主持
2020-2021 上海光源用户课题项目,主持
获奖情况:
2023年,获中国汽车工程学会科学技术进步三等奖(1/5)
2023年,获上海市科技进步一等奖(10/15)
2021年,获上海市产学研合作优秀项目奖一等奖(4/5)
2019年,获中国汽车工业科学技术进步特等奖(13/20)
2017年,获上海市科技进步一等奖(10/15)
2016年,入选“同济大学青年英才计划”攀登层次(跟踪项目)
2014年,入选“同济大学青年英才计划”-攀登层次
林瑞,女,同济大学汽车学院教授/博导,科技部国家重点研发计划首席科学家。2002年毕业于浙江大学,获工科博士学位。2004年中科院大连化物所催化国家重点实验室博士后出站;2005年西班牙最高科研理事会催化研究所工作;2008-2010年德国航天航空局电化学能源中心(DLR)从事氢燃料电池关键材料及关键技术研究工作。
2004年进入同济大学汽车学院工作至今,在新能源领域已有二十余年的研究经验。目前的主要研究方向为氢能与燃料电池的关键技术研究,包括燃料电池/电解槽电堆及关键材料的人工智能辅助设计研发、基于数据驱动的燃料电池健康状态评估与寿命智能预测、多维传感器智能故障诊断技术研究、先进燃料电池及电解槽系统监测技术研发、燃料电池/电解水催化剂及高性能膜电极的研发。曾任国际氢能经济和燃料电池伙伴计划(IPHE)中国联络人、教育部“节能与环保汽车创新引智基地”秘书、汽车学院车用新能源方向教学责任教授。
主持科技部国家重点研发计划“氢能专项”、科技部国家重点研发计划政府间重点专项、科技部国家重大仪器开发专项(课题)、国家自然科学基金、壳牌氢能国际合作项目及上汽前瞻创新先导项目负责人。以第一/通讯作者在Advanced Materials等高水平期刊累计发表SCI论文120余篇,授权专利20余项。曾获2023上海市科技进步一等奖、2017上海市科技进步一等奖、2019中国汽车工业科学技术进步特等奖以及2021上海产学研合作优秀项目一等奖等
教学方面,出版《车用燃料电池技术》教材,并主讲“燃料电池技术”、“能源与电化学基础”等课程。指导多届学生获得国家大学生创新课题及上海市大学生创新课题。已指导博士研究生20名(毕业9名,在校11名),硕士研究生36名(毕业24名,在校12名)。培养的硕士、博士曾多次获得国家级奖学金及优秀毕业生荣誉,在站博士后均获国家青年科学基金、博士后基金、上海市超级博士后等资助。
欢迎具有相关学科背景、热爱科研的优秀学生申请硕士/博士/博士后。在相关领域顶级期刊发表研究论文者优先,专业包括但不限于动力机械及工程热物理、机械工程、材料、自动化、物理、化学、仪器科学、力学等。
近五年,以第一/通讯作者在车用新能源材料及氢能燃料电池技术/多维传感器智能故障诊断技术研究/先进燃料电池及电解槽系统监测技术/燃料电池及电解水电堆关键材料的人工智能辅助设计研发/膜电极及电堆寿命衰减及智能预测技术研发/基于数据驱动的燃料电池健康状态评估与寿命智能预测/储能材料基础研究及应用/碳中和技术基础研究及应用等方向发表高水平论文50余篇(Q1分区32篇)。代表性论文如下:
(1) Electrochemical Carbon Dioxide Reduction in Acidic. Zhe Yao, Xiaomeng He, Rui Lin*. Electrochemical Energy Reviews. 2024, 7:26.
(2) Media Evolution and mechanism of impedance in PEMFC induced by cathode ammonia contamination. Yuan Jing, Jiayin Tian, Xin Cai, Rui Lin*, et .al. Fuel. 2024, 361: 130971.
(3) Revelation of ink solents influence mechanism in catalyst layer of proton. Rui Lin* Jiapeng Lu, Shengchu Liu, et .al. Applied Surface Science. 2024, 655: 159608.
(4) Improved Pt dispersion and catalytic performance by modified carbon support with low surface oxygen content and more mesopores. Xin Cai, Xin Liu, Rui Lin* et .al. Journal of Power Sources. 2024, 604: 234478.
(5) Overcoming Low C2+ Yield in Acidic CO2 Electroreduction: Modulating Local Hydrophobicity for Enhanced Performance. Zhe Yao, Rui Lin*. Small. 2023, 2306686.
(6) Image recognition of cracks and the effect in the microporous layer of proton exchange membrane fuel cells on performance. Shunbo Lan, Rui Lin*, Mengcheng Dong, et .al. Energy. 2023, 266: 126340.
(7) Gram-scale synthesis of Pt-Co core-shell catalyst and its improved performance in proton exchange membrane fuel cells. Xin Cai, Tong Zheng, Shiyang Hua, Rui Lin* et .al. Journal of Power Sources. 2023, 581: 233484.
(8) Image recognition of cracks and the effect in the microporous layer of proton exchange membrane fuel cells on performance. Shunbo Lan, Rui Lin*, Mengcheng Dong, et .al. Energy. 2023, 266: 126340.
(9) Modulation for RuO2/TiO2 via Simple Synthesis to Enhance the Acidic Oxygen Evolution Reaction. Junxi Zhang, Rui Lin*, Yichen Zhao, et .al. ACS sustainable chemistry&engineering. 2023, 11: 9489.
(10) Morphology and overpotential analysis of cathode catalyst layer with different ink compositions in low Pt-loaded membrane electrode assembly. Shengchu Liu, Rui Lin*, Jiayin Tian et .al. Journal of Power Sources. 2023, 558: 232603.
(11) Numerical simulation of liquid water transport in perforated cracks of microporous layer. Rui Lin*, Mengcheng Dong, Shunbo Lan, et .al. Energy. 2023, 262: 125372.
(12) Synergistic poisoning effect of NH3 and NOx gases in the cathode air on proton exchange membrane fuel cell. Rui Lin*, Jiayin Tian, Yuan Jing, et .al. International Journal of Hydrogen Energy. 2023, 48: 31366.
(13) The impact of different side chain ionomer on membrane electrode assembly performance and durability. Shengchu Liu, Rui Lin*, Jiapeng Lu, et .al. Chemical Engineering Journal. 2023, 472: 145050.
(14) Construction and analysis of photovoltaic directly coupled conditions in PEM electrolyzer. Xin Cai, Rui Lin*, Ji Xu, et.al. International Journal of Hydrogen Energy. 2022.47: 6494-6507.
(15) An effective method of applying Octahedral Pt-Ni/C to Membrane Electrode Assembly and Related In-Situ X‑ray Absorption Fine Structures Study. Xin Cai, Shiyang Hua, Rui Lin*, et. al. Applied Surface Science. 2022, 598: 153789.
(16) Improving the performance and durability of low Pt-loaded MEAs by adjusting the distribution positions of Pt particles in cathode catalyst layer. Shengchu Liu, Shihua Yang, Rui Lin*, et. al. Energy. 2022, 253: 124201.
(17) Ionomer distribution control by self-assembled monolayers for high-power and low Pt-loaded proton exchange membrane fuel cells. Hong Wang, Shiyang Hua, Rui Lin*, et.al. Journal of Power Sources. 542, 2022: 231793.
(18) One simple design to improve the mass transfer of low Pt-loaded membrane electrode assembly to realize operation under low humidity. Shengchu Liu , Rui Lin*, Hong Wang ,et. al. Journal of Power Sources. 2022, 541: 231695.
(19) Structural design of microporous layer to mitigate carbon corrosion in proton exchange membrane fuel cells. Liang Chen , Rui Lin*, Mingyu Lou , et .al. Carbon. 2022, 199: 189-199.
(20) Reducing Irreversible Performance Losses via a Graphene Oxide Buffer Layer for Proton-Exchange Membrane Fuel Cells. Hong Wang, Rui Lin*, Xin Liu, et.al. ACS Appl. Mater. Interfaces 2022, 14, 27891-27901.
(21) Investigation on performance of proton exchange membrane electrolyzer with different flow field structures. Rui Lin* Ying Lu, Ji Xu ,et.al. Applied Energy. 2022, 326: 120011.
(22) Research on the variation of current density distribution in a commercial-size proton exchange membrane fuel cell under dynamic gas operation parameters. Yunyang Ma, Rui Lin*, Zhongjun Hou, et.al. International Journal of Heat and Mass Transfer. 2022, 196: 123287.
(23) Degradation Differences of a Single Proton Exchange Membrane Fuel Cell: Energy Management Strategy and Dynamic Programming. Lihang Han, Rui Lin*, Di Zhong, et .al. International Journal of Electrochemical Science. 2021,16.
(24) Optimizing the structural design of cathode catalyst layer for PEM fuel cells for improving mass-specific power density. Rui Lin*, Hong Wang, Yu Zhu. Energy. 2021,221:119909.
(25) Investigation on cold start of polymer electrolyte membrane fuel cells stacks with diverse cathode flow fields. Zhu Yike, Lin Rui*, Han Lihang, et .al. International journal of hydrogen energy. 2021,46:5580-5592.
(26) Interfacial water management of gradient microporous layer for self-humidifying proton exchange membrane fuel cells. Lin Rui*, Chen Liang, Zheng Tong, et .al. International Journal of Heat and Mass Transfer. 2021,175:121340.
(27) Investigation of real-time changes and recovery of proton exchange membrane fuel cell in voltage reversal. Lin Rui*, Yu Hang, Zhong Di, et .al. Energy conversion and management. 2021, 236: 114037.
(28) Microporous Layer Containing CeO2-Doped 3D Graphene Foam for Proton Exchange Membrane Fuel Cells at Varying Operating Conditions. Chen Liang, Lin Rui*, Yu Xiaoting, et .al. ACS Applied materials & interfaces. 2021, 17: 20201-20212.
(29) Mechanism analysis of the effect of different gas manifold positions on proton exchange membrane fuel cell cold start performance. Zhong Di, Lin Rui*, Han Lihang, et .al. International journal of energy research. 2021, 1-13.
(30) One simple method to improve the mass transfer of membrane electrode assembly to realize operation under wide humidity. Cai X, Lin Rui*, Wang H, et .al. Journal of Power Sources. 2021, 506: 230185.
(31) Structure majorization on the surface of microporous layer in polymer electrolyte membrane fuel cells to optimize performance and durability. Lin Rui*, Yu X Y, Chen L, et .al. Energy conversion and management. 2021, 243:114319.
(32) Anchored Pt-Co Nanoparticles on Honeycombed Graphene as Highly Durable Catalysts for the Oxygen Reduction Reaction. Lin Rui*, Zheng T, Chen L, et .al. ACS Applied materials & interfaces.2021,13:34397-34409.
(33) Optimizing the Mass-Transfer Efficiency of a Microporous Layer for High-Performance Proton Exchange Membrane Fuel Cells. Chen L, Lin Rui*, Dong M C, et .al. Journal of physical chemistry C. 2021, 125:14122-14133.
(34) Embedding Pt-Ni octahedral nanoparticles in the 3D nitrogen-doped porous graphene for enhanced oxygen reduction activity. Lin Rui*, Sun Y, Cai X, et .al. Electrochimica Acta. 2021, 391:138956.
(35) Effect of heat treatment on the surface structure of Pd@Pt–Ni core-shell catalysts for the oxygen reduction reaction. Cai X, Lin Rui*, Liu X, et .al. Journal of Alloys and Compounds. 2021, 884: 161059.
(36) Stack shut-down strategy optimisation of proton exchange membrane fuel cell with the segment stack technology. Rui Lin*, Dengcheng Liu, Shixiang Xia, et .al. International journal of hydrogen energy. 2020, 45: 1030.
(37) High durability of Pt-Ni-Ir/C ternary catalyst of PEMFC by stepwise reduction synthesis. Rui Lin*, Lu Che, Dandan Shen, et .al. Electrochimica Acta. 2020, 330: 135251.
(38) Low temperature durability and consistency analysis of proton exchange membrane fuel cell stack based on comprehensive characterizations. Di Zhong, Rui Lin*; Zhenghua Jiang, et .al. Applied Energy 2020. 264:114626.
(39) Structural design of gas diffusion layer for proton exchange membrane fuel cell at varying humidification. Liang Chen, Rui Lin*, Shenghao Tang, et .al. Journal of Power Sources. 2020, 467: 228355.
(40) Microporous Layers with Different Decorative Patterns for Polymer Electrolyte Membrane Fuel Cells. Liang Chen, Rui Lin*, Xiadong Chen, et .al. ACS Appl. Mater. Interfaces. 2020, 12: 24048-24058.
(41) Detailed optimization of multiwall carbon nanotubes doped microporous layer in polymer electrolyte membrane fuel cells for enhanced performance. Rui Lin*, Shenghao Tang, Xiaoyu Diao, et .al. Applied Energy. 2020, 274: 115214.
(42) Investigation of the effect of cathode stoichiometry of proton exchange membrane fuel cell using localized electrochemical impedance spectroscopy based on print circuit board. Dengcheng Liu, Rui Lin*, Bowen Feng, et .al. International Journal of Hydrogen Energy. 2019(44):7564-7573.
(43) Consistency analysis of polymer electrolyte membrane fuel cell stack during cold start . Rui Lin*, Yike Zhua, Meng Ni, et .al. Applied Energy. 2019(241):420-432.
(44) Investigation on cold start of polymer electrolyte membrane fuel cells with different cathode serpentine flow fields. Yike Zhu, Rui Lin*, Zhenghua Jiang, et .al. International Journal of Hydrogen Energy. 2019(44):7505-7517.
(45) One simple method to mitigate the structure degradation of alloy catalyst layer in PEMFC. Wenbin Li, Rui Lin*, Yue Yang. Electrochimica Acta. 2019. 323: 134823.
(46) Gram-Scale Synthesis of Well-Dispersed Shape-Controlled Pt-Ni/C as High-Performance Catalysts for the Oxygen Reduction Reaction. Xin Cai, Rui Lin*, Dandan Shen, et .al. ACS Appl. Mater. Interfaces. 2019.11: 29689−29697.
(47) Investigation of the effect of humidity at both electrode on the performance of PEMFC using orthogonal test method. Bohan Wang, Rui Lin*, Dengcheng Liu, et .al. International journal of hydrogen energy. 2019. 44:13737-13743.
(48) Investigation on the reaction area of PEMFC at different position in multiple catalyst layer. Wenbin Li, Rui Lin*, Yue Yang. Electrochimica Acta.2019. 302: 241-248.
(49) Localised electrochemical impedance spectroscopy investigation of polymer electrolyte membrane fuel cells using Print circuit board-based interference free system. Dengcheng Liu, Rui Lin*, Bowen Feng, et .al. Applied Energy. 2019. 254: 113712.
(50) Optimized microporous layer for improving polymer exchange membrane fuel cell performance using orthogonal test design. Rui Lin*, Xiaoyu Diao, Tiancai Ma, et .al. Applied Energy. 2019. 254: 113714.
专利:
申请中国发明专利30余项,其中授权20余项。
合作单位:
德国航天航空局
香港理工大学
中国科学院大连化学物理研究所
中国科学院应用物理研究所
上海科技大学
上海同步辐射光源

地址:上海市嘉定区曹安公路4800号宁远馆 邮编:201804 

© 2017 同济大学汽车学院 版权所有